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ABSTRACT 

THE phenomenon of steady-state dynamic crack propagation in elastic-perfectly plastic solids under mode 
I plane stress, small-scale yielding conditions is investigated numerically. An Eulerian finite element scheme 
is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. 
The ratio of the crack tip plastic zone size to that of the element nearest to the crack tip is of the order of 
I .6 x 104. Two subjects of general interest are discussed. These are the asymptotic structure of the crack 
tip stress and deformation fields, and the appropriateness of a crack growth fracture criterion based on 
the far-field dynamic stress intensity factor. The crack-line solution by ACHENBACH and LI (Report NU- 
SML-TR-No. 84-1, Dept. of Civil Engineering, Northwestern University, Evanston, IL 60201, 1984a; in 
Fundamentals of Dejknation and Fraciure (edited by B. A. BRILBY et al.). Cambridge University Press, 
1984b) is discussed and compared to the r.umerical solution. The results of this study strongly indicate 
that the crack tip strain and velocity fields possess logarithmic singularities, which is consistent with the 
assumptions in the asymptotic analysis by GAO (ht. J. Frucrure 34, 111, 1987). However, it is revealed 
that the crack tip field variations in Gao’s solution present features often contrary to the numerical findings. 
To this end, a preliminary asymptotic analysis is performed in an effort to resolve certain issues. Finally, 
the critical plastic strain criterion (MCCLINTOCK and IRWIN, in Fracture Toughness Testing and Its 
Appkztiotzs, ASTM STP 381, p. 84, 1964) is adopted to obtain theoretical relations between the critical 
dynamic stress intensity factor and the crack propagation speed. These relations are found to agree well 
with experimental measurements by ROSAKIS ef ul. (J. Mcrli. P!-z_w. Solids 32, 443. 1984) and by ZEHNUEK 

and R~SAKIS (lnr. J. Fructurr, to appear 1990), performed on thin 4340 steel plates whose material 
characteristics match those of the calculation. The results seem to support the existence of a one-to-one 
relationship between the dynamic fracture toughness of the material and the crack propagation speed, for 
materials which fail in a locally ductile manner. 

1. TNTR~D~~CTION 

THIS finite element study investigates in detail the phenomenon of steady-state 
dynamic crack propagation in elastic-perfectly plastic solids, under conditions of 
mode I plane stress and small-scale yielding. Two subjects of general interest are 
discussed, namely the asymptotic structure of the crack tip fields, and the appro- 
priateness of the dynamic stress intensity factor as a basis for the formulation of a 
fracture criterion. Results of related numerical studies on crack tip fields in linear 
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hardening and power-law hardenin, (7 materials, on the effect of non-h’-domillance. 

and on energy dissipation and temperature rise at dynamically propagating crack tips 
in elastic--plastic solids will be reported separately. 

The need to understand the slructure of the crack tip field is vital in fracture 
analyses. and has triggered a large number of analytical and numerical investigations 
on this subject. For elastic perfectly plastic materials in particular, fairly complete 
pictures have been achieved for mode 111 and mode I plane strain crack growth. cvhich 
were reviewed extensively. for example, by RICE (1982). FREUND (1’990) and DEN<; 
(1990). For mode I plant stress crack growth. however, this subject still remains 
elusive. 

For ~~u~~si-st~~tic plane stress crack growth in elastic perfectly plastic solids, ;I pre- 
liminary analysis was provided by RIW (1982). who demonstrated that only two types 
of plastic sectors around the crack tip arc possibic. They arc the ccntcrcd fan sectors 
and constant stress sectors. Yet no successful attempt in assembling a complete cr;tck 
tip field has been reported in mode I. cvcn though a solution in anode II was obtained 
by PONTE CASTA~EIIA (1986). Consequently. the lack of asymptotic solution for mode 
I plane stress, quasi-static crack growth has forced several investigators to resort to 
numerical analyses (DEAN, I983 : Lno cl rd., 1984: NARASIMHA~~ of al., 1987). These 

finite clement studies conducted under small-scale yielding conditions rcvcal many 
inlcresting features of the crack tip field. but arc still not able to completely resofvc 
the detailed structure of the near-tip stress and def~~rnl~Iti~~n fields. 

A similar sitLl~~tion is e~lcoi~ntere~~ for plane stress dynamic crack pro}~~~~~tj(~r~. To 
the authors’ best knowicdpe, thcrc is only one asympto&~ solution available toda! 
(GAO, 1987). Due to mathcmaticai complexities involved in such an nsympiotic 
analysis. it is difficult to judge at the monxnt as to the appropriateness as well as 111~ 

correctness of this solution. Moreover, it is our experience from mode 111 that a5ymp 
totic solutions for dynamic crack propagation ha\ c a very limited range ofd&ninancc 
at the crack tip, whose siLe vanishes rapidly as the crack speed goes to /era (t’RlilJhl) 

and DOUC;LAS, 1982). This fact indicates that a dynamic asymptotic solution cannot 
capture the full features of the crack tip fields for low and intermediate crack speeds. 
which seems to diminish its usefulness in the invesligation of fracture criteria for crack 
growth. To this end, full field solutions, such as from a finite element analysis. must 
bc sought. Occ~~si~~n~~iiy, when parameters for l’rncturc criteria arc derivable from field 
variations along the prospect& crack iinc. &IL’ so-called crack-lint solutions can hi: 
used. such as in mode II I (FI~EUXI, ;tnti Dor:c;r.~s. 19)x? : D~‘NAYKVSKY and I\( Ht:\- 

IMf’H, 1982). in mode i plane stress, such a solution is offcrcd by /l<‘HFiNRIl(‘H and LA1 

( I984a.b). with the help of an assumption rc+ *“,trdinC the radial dcpendencc of stresses i 
at the crack front. 

The subject of fracture criteria for crack propagation is our next concern. For 

dynamic crack growth under small-scale yieldin, ~7 conditions the following fracture 

criterion. based on the far field dynamic stress intensity factor, has been proposed : 

K:(l) = K;l(r(1)). (1.1) 

This criterion states that during crack growth, the ins~~~t~t~~nc~~us value of‘thc dy~l~~~l~~c 
stress intensity factor K:(r), should be, at all times, equal to the quantity ~~~(~~(~)). 
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called the (plane stress) dynamic fracture toughness. The dynamic fracture toughness 
is assumed to depend in a one-to-one manner on the crack tip velocity 13. This 

functional dependence on velocity is expected to be a purely material characteristic. 
The appropriateness of the fracture criterion (l.l), or the X;‘, vs z’ relationship, 

depends on the assumption that K:, exhibits a unique, one-to-one dependence on the 
crack propagation speed. This assumption is a key issue being debated in the dynamic 
fracture mechanics community today. The debate about the uniqueness of the material 
dependence of k’$.(t.) stems mainly from contradictory experimental observations. 
For example, while experimental results by K~BAYASHI and DALLY (19771, ROSAKIS 
rf crf. ( 1984), and ZEHNDER and R~SAKIS (1990) indicate a unique K$ vs 1% relationship, 

those by RAVI-CHANDAR (1982), KALTHOFF (1983), and RAW-CHANDAR and KNAIJSS 

( 1987) do not find such a uniqueness. 
A closer examination of the experiments reveals that most of the experiments in 

favor of the uniqueness idea are conducted on metals which fail in a locally ductile 
manner. Advances in the understanding of crack propagation in such materials have 
been achieved through some recent studies. In a combined analytical and numerical 
study of mode III elastic -plastic crack propagation problems, FREUND and DOUGLAS 
(1982) used a critical plastic strain criterion (MCCLINTOCK and IRWIN, 1964), to 
obtain theoretical K$ vs 1’ curves which resemble those from experiments showing 
unique K;t(r.) relations. In a separate investigation on the problem of mode I elastic- 
plastic crack propagation under plane strain. small-scale yielding conditions, LAM and 
FREUND (1985) employed a different fracture criterion, i.e. the critical crack opening 
angle criterion (RICE and SORENSEK, 1978; RIG ft (I/., 1980). and again obtained 
theoretical K;I vs I‘ curves with the same qualitative tendencies. It should be noted 
here that these criteria are mostly suited for metals that fail in a locally ductile manner. 

Although the above comparisons are made between theoretically generated K;‘, vs 
L’ curves for mode III and mode I plane strain, and experimental results which are 
more closely related to mode I plane stress. such comparisons do strongly indicate 
that it is indeed possible to explain experimental observations in terms of local material 
behavior at the crack tip. Since many engineering structures are made of thin sheets, 
a plane stress elastic plastic analysis, such as the present study, is also necessary. 
Furthermore, due to the complicated three-ditnensional character of the stress and 
deformation fields near the crack edge. detailed two-dimensional analyses, whether 
in plane stress or plane strain, or in anti-plant shear, are the first step towards the full 
un~~erstanding of the three-dinlensional fracture behavior. However. also due to the 
three-dilnellsional character of the near-tip fields, all such t~,o-dimensional analyses 
are bound to be qualitative in nature, and findings of such analyses must be interpreted 
cautiously. 

The finite element formulation employed in this study is of the Eulerian type. which 
was first used in fracture mechanics by DEAN and HUTCHINSON (1980). Stresses are 
obtained by nulnerically integrating the incremental elastic -plastic constitutive law 
over strain increments, with the Modified Tangent Predictor-Radial Return algorithm 
(DEN<;. 1990). This stress integration algorithm combines the fine points of both the 
original Tangent Predictor-Radial Return algorithm (SCHRF:YER et ul., 1979), and the 
Secant Stiffness algorithm (RICE and TRACEY, 1973 ; TRACEY, 1976), in that it is easy 
to implement in plane stress, and that it gives a stress state automatically satisfying 
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the yield condition at the end of a strain increment for elastic-perfectly plastic and 
linear hardening materials. 

In implementing the stress integration algorithm, a solution procedure proposed 
by DENC and R~SAKIS (1990) is adopted. With this technique, existing solution 
procedures in wide use today can be modified to eliminate the occurrence of negative 
plastic flow, and to avoid treating elastic unloading as plastic flow. This modification 
is shown to improve the accuracy and convergence of the nLlrneri~~1 solution. 

3 
I. FINITE ELEMENT FORMULATION 

In this section, the finite element formulation and the design of the finite element 
mesh are discussed briefly. Details can be found in other publications (DENG, 1990 ; 
DENG and ROSAKIS, 1990). 

The elastic-perfectly plastic material under consideration is assumed to be homo- 
geneous, isotropic and obey the von Mises yield condition and the associated flow 
rule. Suppose a crack is propagating steadily in a plate made of such a material (refer 
to Fig. I), such that an observer moving with the crack tip will not see any changes of 
the crack tip fields as the crack extends. Mathematically, this requires that the crack 
speed 2% be a constant, and that for any field quantity, say. q. its material time derivative 
be computed from 

(2. I ) 

Equation (2.1) implies that the time rate or the time history of any field qu~tntity for 
steady-state crack growth is stored spatially along horizontal lines parallel to the 
direction of crack propagation. 

Making use of the property specified by (2.1) for steady-state crack growth, an 
iterative finite element solution procedure proposed by DEAN and HUTC’HINSON ( 1980) 
is adopted in this study. At each solution step, convergence is said to have been 

X2 

x; 

1_ 
0’ Xi 

CRACK 

2 v = da(t)/dt 

0 Xl 

a(t) 

FIG. 1. A di:tgram of crack propagation. where (\-‘,. Y>) is a lined reference coordinate system, (_v,. x-,) is a 
moving system with origin at the crack tip, and (r. 0) is the associated polar coordinate system. 
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reached at the (k+ I)th iteration, if the following criterion is met simultaneously for 
every choice of i, j and CA : 

(2.2a) 

(2.2b) 

(2.2c) 

where rri,, eii and ZI, represent respectively the stress, strain and displacement com- 
ponents, i,,j have the values of I, 2 and 3, cz has the values of 1 and 2, /I l I/ z is the 
standard 2-norm, and c is the error tolerance which is a small positive number. The 
stress and strain norms are summed over all Gauss integration points, and the 
displacement norm is summed over all nodal points. The value of c is taken to be 
around 1 .O x 1O.W4 in the current computation. 

In this investigation, the small-scale yielding condition (RICE, 1967, 1968) is 
assumed. A rectangular domain of finite size (see Fig. 2) is used to model the math- 
ematical problem of a semi-infinite crack advancing in an otherwise infinite plate. 

Crack tip located at the origin Crack growth towards the right 

-4.5 .O 4.5 

x,/W/up I* 

FIG. 2. A cozarse representation of the finite element mesh used in the present computation. 
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According to the boundary layer concept introduced by RKE (1967, 196X), the 
solution for this lnathematical problem is equivalent to the crack tip solution for the 
original mechanics problem under small-scale yielding conditions. As pointed out by 
DEAN (1983). a domain with a size larger than 10 times that of the crack tip active 
plastic zone will suffice to produce reasonable results. The size employed in this 
investigation is about 15 times larger than that of the plastic zone. 

The middle point of the rectangle’s bottom boundary is made to coincide with the 
current crack tip position. The traction-free crack surface lies along the bottom from 
the lower left corner to the crack tip: accordingly. the line from the crack tip to the 
lower right corner represents the symmetry plane. Also from the schematic of the 
mesh shown in Fig. 2, it is seen that the rectangle is discretized by a network of 
horizontal and vertical lines, whose intervals decrease rapidly towards the bottom line 
and the center vertical line, resulting in increasingly small elements near the crack tip. 
The divided areas are simply represented by four-noded isoparamctric rectangular 
elements, with 2 x 2 Gauss integration points. This type of element arrangement is 
designed to fit the need of the Eulerian finite element formulation, such that stresses 
can be integrated along horizontal lines composed of Gauss points, from the right 
boundary to the left (for details. see DEYG, 1990). 

Two meshes of high resolution arc used in our computation. They are different in 
that the numbers of the horizontal and vertical tines of the mesh networks and the 
variations of the intervals between those lines are different. In the finer mesh, the 
network of lines results in 4050 elements with 4186 nodes. and the ratio of the plastic 
zone size to that of the smallest near-tip clement is of the order of 1.6 x IO’. In the 
slightly coarser mesh, there are 1800 elements, and the plastic zone size is about 
0.X x 10J times the size of the smallest near-tip element. Co~nparisons between numer- 
cal results obtained from those two meshes demonstrate very good agreement. which 
will be discussed in the next section. 

The boundary condition is specified as follows. In accordance with the small-scale 
yielding assumption. surface tractions and displacements corresponding to the crack 
tip elastic singular field, which is characterized uniquely by the dynamic stress intensity 
factor Kf, are prescribed on the domain boundary. with necessary upd~~tin~ on the 
portion of the boundary near the crack flank, where boundary conditions incompatible 
with the K-field arise due to the presence of the residual plasticity in the plastic wake. 
The Poisson ratio v is taken to be 0.3. All logarithmic values used in figures arc based 
on the natural number e. 

3. CRACK TIP FIELDS 

Crack tip asymptotic fields for quasi-static crack growth under conditions of mode 
1 plane stress and small-scale yielding is first explored. This subject was previously 
investigated, using the finite element method, by DEAN (1983), LUO et al. (1984), and 
NARASIMHAK et d. (1987), which revealed many features of the crack tip fields. Since 
a much finer mesh is employed in the present study, and from detailed comparisons 
performed in DEN; (1990). we believe that the results of the current study represent 
a better approximation for steady-state quasi-static crack tip fields. 
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However, most of the results regarding quasi-static crack growth obtained in this 
study will not be cited here, but can be found in DENC (1990), which documents 

numerical field variations and analytic asymptotic analyses not yet published in the 

literature. 
Nonetheless, to indicate the accuracy and reliability of this study, a brief comparison 

of results is made below, with those by NARASIMHAN cf ul. (19X7), who adopted a 
totally different finite element formulation, namely the nodal release procedure first 
used by SORENSEN (1978). The comparisons are shown in Fig. 3, with CJ() and T,, 

denoting respectively the initial yield stress in tension and shear, which indeed dem- 
onstrate very good overall agreement. Note that in the angular variations, numerical 
data are taken along a rectangular path about 1 .O x IO '(K/aJ' away from the crack 
tip in the results of Narasimhan et al., and along circular paths in the current study, 
where the path with radius r/(K/ao)’ = 0.641 I x lo-’ is for the coarser finite element 
mesh, and the path with radius r/(K/a,)’ = 0.2033 x IO 3 is for the finer mesh. Further 

confidence in the results of the present study can be gained through detailed com- 
parisons, between available asymptotic analyses and parallel finite element studies by 
the current authors, of asymptotic crack tip stress and velocity field variations for 
quasi-static and dynamic crack growth in linear hardening solids under plane stress 
conditions. These comparisons, which will be reported separately and can be found 
in DENG (1990), demonstrate very good agreement. 

Published studies on the stress and deformation fields around a rapidly propagating 
crack tip in an elastic-perfectly plastic solid under plane stress or generalized plane 
stress conditions are rare. 

ACHENBACH and Lr (1984a,b) proposed a crack-line solution for mode I steady- 
state which assumes that g12 and hence CJ, , are constant along 8 = 0 from the crack 
tip up to the elastic-plastic boundary, which is then used to extract a theoretical Kfc 
vs I' curve, where Kfc is the plane stress fracture toughness, and z‘ the crack tip speed. 
However, to interpret their findings correctly, it is necessary to verify the assumptions 
which form the very basis of their analysis. There are no such verifications available 
as of today. 

GAO (I 987), on the other hand, obtained an analytic mode I solution valid asymptot- 
ically in the crack tip area. Due to the mathematical complexities involved in the 
analysis and due to the limited data presented in his paper, it is difficult to judge with 
confidence whether this solution is unique or appropriate. Besides, from the experience 
for mode ITI fracture, it is expected that any first-order asymptotic dynamic solution 
would only have a restricted near-tip domain of validity which vanishes as the crack 
tip velocity goes to zero. This poses a problem when one is interested in getting a 
crack-velocity dependence for a certain physical quantity. say, for the dynamic fracture 
toughness. 

It is apparent then that detailed full field numerical studies will greatly help to 
resolve the issues mentioned above. To our best knowledge, the results presented in 
the following document are the first published effort to investigate numerically the 
crack tip stress and deformation fields for dynamic elastic--plastic crack growth under 
plane stress conditions. The two meshes, both of high spatial resolution, are used as 
follows. The finer mesh is employed to study a typical dynamic case, namely the case 
for nz = 0.3. where 112 is the ratio of the crack tip speed 1’ to the material elastic shear 
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wave speed c,. The slightly coarser mesh is used, for cost considerations, to carry out 
computations for the wholle range of m values from 0.0 to 0.4, where quasi-static 
crack growth is meant by m = 0. The evolutionary variations of field quantities with 
respect to nz are thus obtained. 

The actire plastic zones 

The variation of the active plastic-zone shapes with respect to the Mach number n? 
is shown in Fig. 4(a), where the coordinates are nondimensionalized through the usual 
normalization (K/oO)‘, with K being the generic dynamic stress intensity factor, and 
co the initial yield stress in tension. 

It is observed that as nz or the normalized crack speed increases, the active plastic 
zone shrinks along the crack line from size 0.265(K/~~)~ at m = 0.0 to 0.255(K/o,,) 
at m = 0.4, and it spreads out in its height direction from size 0.084(K/~,)’ to about 
O.l5(K/a,) *, which almost doubles the quasi-static value. 

Moreover, the near-tip angular extent of the active plastic zone grows as m becomes 
larger, actually from 45” at m = 0.0 to about 90” at m = 0.4, as shown by an expanded 
view of the crack tip zone in Fig. 4(b). From this figure, a secondary active plastic 
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FIG. 4. (a) Active plastic zone shapes for various normalized crack propagation velocities. with the origin 
located at the crack tip. (b) Detailed view of the active plastic zone shapes at the crack tip for various 
normalized crack propagation velocities, with the origin located at the crack tip. (c) The variations of the 

angular extent of the near-tip active plastic zones with respect to the normalized crack speed. 
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zone, or a reversed yielding zone. is clearly revealed for m = 0.35 and 0.4 near the 
crack flank. The variations of the angular extent of the primary near-tip active plastic 

zones with respect to m is shown in Fig. 4(c). 
This type of plastic zone arrangement is very similar to the findings of DOUGLAS 

(1981) for mode III dynamic crack propagation, utilizing the same finite element 
technique as used in this study. While the asymptotic solution by SLEPYAN (1976) for 
mode III predicts an all-round plastic zone, which is not confirmed by Douglas’ 
investigation, Gao’s mode I plane stress asymptotic solution anticipates an elastic 
unloading sector behind the primary active plastic zone, which is consistent with our 
results. 

Anyhr firId zwiation.s 

As in the quasi-static case, our angular field variations are obtained from finite 
element data extracted from locations about five elements away from the crack tip 
along a circular path with a distance to the tip of 0.2033 x IO- ‘(K/so)’ for the finer 
mesh, which is about one thirteen-hundredth of the active plastic zone size R,, and 
of 0.6411 x 10 3(K/~,,)2 for the coarser mesh, which is about one four-hundredth of 

RP. 
In conjunction with the above-observed reverse yielding phenomenon. the angular 

effective stress distribution presented in Fig. 5(a) gives details regarding the evol- 
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FIG. 5. (a) The angular dependence of the effective stress for various normalized crack speeds. (b) The 
angular dependence of the polar stress components for various normalized crack speeds. (c) The angular 

dependence of the Cartesian rectangular stress components for r/c, = 0.3. 
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utionary tendency of the existence of a secondary active plastic zone behind the crack 
tip, where oe, the effective stress, regains its yielding value D,, for nz = 0.35 and 0.40. 
The asymptotic solution by GAO (1987) shows however that the secondary active 
plastic zone exists for all values of m from 0.0 to 0.3. In particular, he found that the 
angular extent of this reverse yielding zone increases as m decreases, which is strongly 
contrary to our findings. 

Figure 5(a) also reveals that the effective stress deviates from CJ~) at about 8 = 45’ 
for m = 0.0, and 90’ for KV = 0.4, which are consistent with our earlier discoveries 
pertaining to the angular extent of the primary active plastic zones at the crack 
front. Again Gao’s results predict different active plastic zone angles, which, in his 
calculation, are always larger than 90’-. 

Next we discuss, as shown in Fig. 5(b), the U-dependence of other stress components. 
First we want to point out that the symmetry condition at the crack front and the 
traction-free condition at the crack faces are well satisfied. We emphasize this because 
with the Eulerian-type finite formulation we employed, stresses are obtained through 
integration of the incremental constitutive law, along lines parallel to the crack line, 
from crack front downstream to the area behind the crack tip. When the integration 
sweeps the crack tip, the inevitable large discretization errors at the crack tip are 
carried over to regions behind. It is then expected that such numerical errors are 
accumulated along the crack flank and the momentum-balance iterations are mostly 
carried out to minimize the errors there. Hence the satisfaction of the boundary 
conditions at the crack surface is a major indication of a converged numerical solution. 

It is then seen from Fig. 5(b) that the changes of crHH with respect to 0 are smooth 
for all values of m, and that while the changes of err and gT,.(! are smooth for lower m 
values, a kink develops for higher m values, notably for the case of 111 = 0.4 at Q + 90 ‘, 
where approximately the boundary between the active plastic zone and the elastic 
unloading zone is located. This seems to agree qualitatively with the analytic pre- 
dictions by GAO (1987) although quantitatively large differences exist. 

The angular variations of the Cartesian rectangular stress components are shown 
in Fig. 5(c), for the typical case of n? = 0.3. It is found that 02> and 0, 2 are respectively 
always positive and negative except near the crack surface, whereas o,, changes sign 
when 0 reaches approximately 135 . 

Next the plastic strain variations are illustrated, with strains normalized by c,,, the 
initial yield strain in tension. It is noted that the plastic strains outside the active 
plastic zones are the residual plastic strains. Figure 6(a) shows the d-dependence of 
the polar components of the plastic strain, the effective plastic strain and the out-of- 
plane plastic strain for m = 0.3. It is seen that the polar components exhibit, just as 
in the quasi-static case, sinusoidal-like behaviors while E,P and ~2~ remain fairly Aat 
for most of the 0 ranges and rise up near the crack flank, which are apparently due 
to the residual plastic strains accumulated at the crack tip (theoretically they should 
tend to infinity if the plastic strains in the active plastic zone are singular). The 
sinusoidal-like behaviors are in fact present in all our calculated cases, whose pro- 
gressive changes with respect to nz are shown in DENC (1990). This phenomenon is 
easily explained if the angular variations of the Cartesian rectangular plastic strain 
components are examined. It is discovered from Fig. 6(b), for the case of m = 0.3, 
that throughout the angular range, the 2-2 component is dominantly larger than the 
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1-1 and 1-2 components, which means that the effective plastic strain, through its 
definition, and the out-of-plane plastic strain, through the plastic incompressibility, 
are dominated by E;~. Hence, they behave like E 52 as seen from the figures. The 
predominance of the 2-2 Cartesian component certainly also accounts for the sinus- 
oidal behaviors of the polar components, which becomes clear if a tensorial trans- 
formation is performed. It is also worth mentioning that as the crack speed goes up, 
the magnitude of ~p2? decreases and that of c’;, increases. 

The angular variations of the velocity field around the crack tip are shown in Fig. 
7(a) for the polar components and in Fig. 7(b) for the Cartesian components. It is 
observed that L’,. starts negatively at 0 = 0 and ends at values close to zero, whereas 
qj starts at zero, as it should due to symmetry conditions, and ends at negative values. 
For all nz values we considered, both ~1~ and qJ curves go up steadily (i.e. with positive 
slopes) initially and then fall down consistently all the way to the crack surface. The 
Cartesian components also share the initial positive-slope characteristic and remain 
that way approximately up to the elasticcplastic boundary where they level off until 
they meet the crack surface. 

We would like to emphasize the observation that at 8 = 180’ tyl is very close to zero 
for 1)1 < 0.3, and it apparently becomes nonzero as m becomes larger, especially for 
m = 0.4, which, in our opinion, has to do with the fact that as m becomes larger, a 
secondary active plastic zone develops along the crack flank. 

Mach mllhr q - v/c, q#r * 400 Alorxl r/M/u,)* - .6411e- 
6 

6 

0 30 60 90 120 150 160 

9 

FIG. 7. (a) The angular dependence of the polar velocity components for various normalized crack speeds. 
(b) The angular dependence of the Cartesian velocity components for various normalized crack speeds. 
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FIG. 7(b). 

We will show in the subsection of asymptotic analysis that if there is no plastic 
reloading at the back of the crack tip, then inside the elastic unloading zone behind 
the crack tip, r’, is less singular than In I’ whereas z’~ is as singular as In r, which means 
that the magnitude of z’, there is vanishingly small when compared with that of r2. 
However, if there is a plastic reloading zone at the back of the crack tip, then both I’, 
and z’? should possess the same In r singularity as r approaches zero. but the coefficient 
for the P, singularity is not necessarily zero. 

Rudiul fidcl turiutions 

Many interesting characteristics can be observed from the radial distributions ol 
stress and deformation fields, which are also very important for the studies of fracture 
criteria and for the search of appropriate asymptotic solutions. 

Figure S(a) describes for m = 0.3 the crack-front stress variations with respect to 
the normalized radial distance and covering regions both inside and outside the plastic 
zone. It is obvious from the figure that outside the plastic zone (note that the plastic 
zone size is about 0.26(K/o,)‘) both 0, , and CJ?~ become smaller as the distance from 
the crack tip becomes larger, and eventually they intersect each other and then change 
their relative magnitudes as required by the dynamic asymptotic K-field specified on 
the crack-front boundary. While inside the plastic zone, it is seen that as the distance 
Increases, cr , , increases sharply whereas CT 2Z only decreases slightly, and that C, , has 

a crack tip asymptotic value clearly greater than z,,, i.e. greater than its quasi-static 
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FIG. 8. (a) The radial dependence of the stress components at the crack front along the prospective crack 
line for r/c; = 0.3. (b) The radial dependence of the stress components at the crack front for various 
normalized crack speeds. (c) The radial dependence of the Z-2 stress component at the crack front for 

various normalized crack speeds. 
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counterpart, whereas CT?? has an asymptotic value about 27() which is almost the same 
as the quasi-static value. 

A more detailed asymptotic view of the radial stress distributions along the crack 
line is presented in Fig. 8(b,c) for all cases of crack propagation speeds considered. 
It is discovered that while (TV, increases as HZ goes up (see Fig. Sb), 1~~~ actually 
decreases, although shghtly, as rn increases. 

At this point we would like to point out a strong inconsistency of the solution by 
GAO (1987) with our numerical findings. It can be seen from Figs 3 and 4 of Gao’s 
paper that the value of CJ, , at 0 = 0’ for vz = 0.3 is smaller than to, or smaller than 
that for ~7 = 0 (also refer to Fig. 5 of his paper). 

Our numerical solutions also showed approximate linear radial variations of both 
C, , and CT~?. Note also that the 1-2 component of the stress field is always Lero, 
satisfying the symmetry condition at 0 = 0 

The strong r-dependence of the 1- 1 stress component noted in Fig. S(a,b) is appar- 
ently in disagreement with the assumption made in the crack-line solutions by ACH- 
ENRACH and Lr (1984a,b), namely the assumption that azl(f) and hence ai ,(r) are 
constants along H = 0 up to the elastic -plastic boundary. 

The radial dependence of crack tip plastic strains is shown in Figs 9-.12. First of 
all, typical variations are illustrated along the radial line 45 which are depicted in 
Fig. 9, where we see that very near the crack tip. the 2-2 plastic strain component. 
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FE. 9. The radial dependence of the Cartesian rectangular plastic strain components along the radial line 
0 = 45 for rjc, : 0.3. 

and hence the effective plastic strain, demonstrate much stronger radial dependence 
than the l-l and 1-2 components, which confirms our earlier observations from their 
angular variations (see Fig. 6). However we cannot rule out the possibility that ~7, 
and eyz are singular as Y + 0, although their magnitudes will be very small compared 
to the magnitude OF cp?. 

The I- I plastic strain component variations for various m values are illustrated in 
Fig. 10. It is clear from the figure that e ‘; , does show large slopes near the crack tip, 

especially for larger PI values, which indicates a singular behavior. In fact, if the data 
in Fig. IO are plotted in log-coordinates, approximate linear relations can be observed, 
which strongly suggests a logarithmic singularity. Another characteristic of the 1-I 
component variation is that its magnitude tends to fiip over to lower values as the 
normalized distance increases, which can be seen from Fig. 10. 

The evolutionary variations of E 1;> along the crack line is shown in Fig. 1 I (a). One 

of the characteristics of these variations is that as m increases, the magnitude of this 
dominant plastic strain component decreases. It is observed that a clear singularity 
exists at the crack tip. Actually it is strongly indicated in Fig. 11 (b) that F$? behaves 
as In r as the crack tip is approached. 

Logarithmic strain singularities for dynamic crack propagation in elastic-perfectly 
plastic solids were also reported for mode III (see, for example, SLEPYAN, 1976) and 
mode I plane strain (GAO and NEMAT-NASSER, 1983 ; GAO, 1985). It is noted here 
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that in the incompressible plane strain case, a proof is offered by LEKHTON if rd. 

(1987) stating that stress discontinuities are not permissible if the maximum plastic 
work principle is to be satisfied, and hence they showed that In Y type velocity or strain 
singularities are not permitted for this special case. GAO (1987) in his mode I plane 
stress asymptotic solution, assumed In r strain singularity, and consequently the same 
velocity singularity. 

Since the plastic strains are dominated near the crack tip by the 2-2 component. it 
is expected that the effective plastic strain behaves just like the 2-2 component near 
the tip. Figure 12(a,b) verifies this. Here we would like to point out that since cg is a 
measure of plastic straining, a conclusion can then be drawn from Fig. 12(a), namely 
that as crack speed increases, plastic straining at the crack front becomes less severe. 
This reduced plastic straining phenomenon in fact has been found in all three fracture 
modes from stationary cracks to extending cracks (for example, see DEN<;, 1990). 
Thus. at a certain fixed load-level characterized by the value of the far-field stress 
intensity factor K, the level of plastic straining represented by the effective plastic 
strain is lower for higher crack propagation speeds at the same location ahead of the 
crack tip. In order for the level of plastic straining at a higher crack speed to be the 
same as that at a lower crack speed, the loading level for the former must be raised. 
We will discuss this observation in more detail in Section 4, where fracture criteria 
are investigated. 

The radial distributions of the Cartesian velocity components are presented in Fig. 
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FIG. I I. (a) The radial dependence of the 2-2 plastic strain components at crack front for various normalized 
crack speeds. (b) The radial dependence of the 2-2 plastic strain components at crack front for various 

normalized crack speeds, plotted against the logarithmic values of the normalized distance. 
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13 for z:? and in Fig. 14 for t’,, which are of more interest in the sense that asymptotic 
solutions are usually obtained in terms of velocities instead of strains. Note that the 
normalized velocities are plotted against the logarithmic values of the normalized 
distance, along two radial lines, namely along 0 = 45” and 135”. It is discovered that 
while z’~ behaves, especially for lower rn values, as In r at the crack tip, the magnitude 
of its coefficient becomes much smaller for higher m values. Yet, interestingly enough, 
the opposite is observed for v,. For small m values, approximately horizontal lines 
are observed, which indicates very weak or no In r dependence, whereas as m increases, 
the linear curves are found to increase their slopes significantly, which indicates strong 

In r dependence. 
Also of some interest is the radial variation of the velocity field along the crack 

flank, which is shown in Fig. 15. It is seen that the magnitude of L’2 decreases rapidly 
as the distance from the crack tip increases, but it is not clear from our results if t’? 
will tend to zero as the distance continue to increase. The 23, component is found to 
equal approximately zero at all distances from the tip. 

The In r-velocity singularities indicated by the above finite element results and the 
changes of their magnitudes with respect to the crack propagation speed will be further 
discussed in the subsection of asymptotic analysis. At the same time, it is worth 
pointing out that the asymptotic analysis given by GAO (1987) assumed, to start with, 
that the strain field has a In r singularity. Hence, he essentially assumed a velocity 
field with a In r singularity. Moreover. from the form of the velocity field used, it 
can be derived that only the velocity component zl,(r, 0) will have the assumed In r 

singularity, whereas the velocity component vL(r,8) is bounded in Gao’s solution. 
This feature seems contradictory to our numerical findings, which will be explained 
later in an asymptotic analysis. 

Finally we present the results for the crack surface profiles during crack propa- 
gation. The global view of the vertical displacement component u2, which is half the 
crack opening displacement, is illustrated in Fig. 16(a) for different crack speeds. It 
is noted here that in the normalized coordinates, the magnitude of u2 increases as m 

increases, 
The question at this point is whether this tendency will reverse, that is, how small 

r should be in order to see a decrease in the magnitude of u2 for increasing m. In a 
similar numerical study for mode I plane strain crack propagation by LAM and 
FREUND (1985), it is reported that for m values from 0.0 to 0.4, the reversing point is 
at r = 0.05(K/0,,)~ behind the crack tip. However for the plane stress case, we did not 
find such an early reversing point. As depicted in Fig. 16(b), no reversing tendency is 
detected even on a length scale about one-hundredth smaller than that used by Lam 
and Freund, except for m = 0.4 where a small deviation is noticed. 

Now let us pay attention to the slope changes of the crack tip openings for different 
m values. From Fig. 16(b), it can be seen that while for small m values the opening 
profiles bend down near the crack tip, they are approximately straight lines for higher 
wz values, whose slopes are actually rather insensitive to the crack speeds. Similar 
numerical results are also reported for the mode III case (DOUGLAS et al., 1981). 
This seems to indicate a tendency that the crack opening displacement assumes 
asymptotically at the tip a linear radial dependence as the crack speed becomes higher, 
or as the dynamic effect grows larger. 
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In the abow we presenred the results ~er~~~ini~~ to the nature of crack tip stress 
and deformarion fields for dynamic crack propagation in elastic perfectly plastic 
solids under conditions of mode I plane stress, steady state and small-scale yielding. 
Detailed comparisons with the asymptotic solution by GAO (1987) were performed. 

It was observed that the asymptotic neal-tip field by Gao involves many charx- 
teristic behaviors often contradictory to the findings of the present full I-i&l numerical 
sturdy. It is noted that in Gao’s analysis it is directly assumed that the srrain field. and 
hence the velocity field possess In ~-sin~ul~~l-iti~s at the crack tip, and that the stresses 
are bounded and can bc treated as functions of 0 only. The result of rhc present finilc 
element solution very near the crack tip seems to confirm the logarithmic behavior of 
the strain and velocity fields. However, the particular form adopted l’or the velocity 
field in Gao’s asymptotic analysis implies that only the velocity component r.,(r.,O) 
has 3 In r-singularity at the crack tip or r = 0, whereas the velocity conxponcnl r,fr. 0) 
is bo~n~~ed~ which seems colltr~ry to our nclmeric~~f rcsuit. 

It is our purpose here to discuss 3 ~re~~min~ry asymptotic analysis regarding the 
near-tip radial dependence of the velocity field and of the crack opening displacement. 
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ITif;. 16. (a) The radial dependence of the displacement component ~1~ along the crack flank for various 
l~or~~a~izcd crack speeds. (b) A detailed view of the radial dependence of the displaccm~nc component u2 

along the crack flank for various normalized crack speeds. 
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Certain features of the numerically determined crack tip field and their differences 
with Gao’s asymptotic solution will be interpreted accordingly. No direct assumptions 
about the singularity of the velocity field and the boundedness of the stress field will 
be made, although assumptions of other types are still necessary. 

Now suppose a crack is propagating steadily (see Fig. I) under mode I plane stress 
conditions in an elastic-perfectly plastic solid obeying the von Mises yield criterion 

and the associated flow rule. From the steady-state condition, it is necessary that the 
crack tip velocity I* be a constant and that for any field quantity, say q. its material 
time derivative be computed from (2.1). For an actively yielded stress state c,,, the 
yield condition requires that 

s,,s,, ’ = 7,. (3.121) 

where 7ii is the yield stress in simpie shear, s,, is the deviatoric stress tensor component 
given by 

.r,, = f7,,- \O,,hfi,,. (3.Ib) 

It is understood here that Latin indices have range one to three while Greek indices 
have range one and two, and that the standard indicial notation and its associated 
convel~tions are used. The plane stress conditio~l sitnplifies the above equations with 

(T 7, = 0. (3.2) 

Immediately from (3. la), it is seen that ,s,, must be bounded. Since + 1 = 0, then f’rom 
(3.1 b), ohk = -3~~~. Hence cAA is also bounded. Consequently, it can be concluded 
from (3. I b) that oil must be bounded. 

To investigate the asymptotic structure of the crack tip field, let us consider a 
generic sector at the crack tip. Suppose the sector is confined by two straight radial 
lines from the crack tip. We further assume that all limits taken below exist in this 
sector such that operations on the order symbols are permissible within this sector. 

Next define Zi,(H), a function of 6’ at the crack tip, as follows 

5,(H) = ti_T (i,,(~, (I). 

and let 

ci,j(r,fl) = d,,(I”, fl)-c?,,(H). 

Then the stress state ai,(r-, 0) near the crack tip can be expressed as 

(3.3a) 

(3.3b) 

Hence from (3.3a) and (3.3b), it is true that lim,. ,oci,j(r,(j) = 0, or that, using the 
order symbols (see, for example, ERDI~LYI, 1956), (iBj(~, 0) = o(l) as r + 0. Then we 
must have A?,/& = 0(1/r) as P -+ 0, since otherwise if dci,/c?r = 0(1/r) as r -+ 0. we 
would have cii,(r, 0) = O(ln r) as r + 0, which violates our original conclusion. 

Now it is established that d8jj/& = o(l/r) as r -+ 0, then r(ddc,/ar) = o(l) as Y -+ 0 
or lim,,, r(Si,,/&) = 0. Hence from (3.3c), lim,,, r(aoi,/&) = 0. Using the above 
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results and the following identities 

3 > _ 
ax, 

sin @ a() + cos 0 a( > 
ar r (%I ’ 

it can be proved that 

ao;i _ o ! 
ax, 0 r (M= 1,2) as r-+0. 

(3.4a) 

(3.4b) 

(3.5) 

In order to investigate the singularity of the velocity field c,(r, 8) at the crack tip, a 

study of the basic equations is necessary. Under steady state and plane stress 

conditions, the equation of motion in the crack tip moving coordinate system will be 

(3.6) 

where v is the crack propagation speed and p is the mass density of the material. 
Similarly, the constitutive law can be written as 

where E is the Young’s modulus, v is the Poisson ratio, and ,i is the plastic flow factor 
such that it is zero for an elastic stress state and it is nonnegative for an actively 
yielded stress state. 

From (3.5) and (3.6) it is clear that 

$-) ! 0 as Y -+O. 
I r 

(3.8a) 

It is our purpose here to show that 

(3.8b) 

for all elastic sectors and for plastic sectors where gz2 + 20, ,. 
First of all, for a sector in an elastic stress state, II = 0. Then, noting (3.5) and 

(3.8a), it is clear from (3.7b) and (3.7~) that (3.8b) holds. 
Secondly, in a plastic sector where cr 22 # ACT,,, it can be shown from (3.9, (3.7a) 

and (3.8a) that i = 0(1/r) as r approaches zero. Substitution of i into (3.7b) and 
(3.7~) will then readily yield (3.8b). 
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In fact, the results of the present finite element study seem to suggest that the crack 
tip is surrounded completely by these two types of sectors, as shown in Fig. 17. 
Nevertheless, if both (3.8a) and (3.8b) hold. then from the chain rule i~:‘Cr = 
(&~,/~_x,)(~x,/&) and the identities c?x,/dv = cos 0 and (7.uz/dr = sin 0, it can be 

concluded that 

c?r I I 

(‘! 
=0 0 as r --) 0. 

r 
(3.9) 

Consequently, ~1, = O(ln r) as r + 0. Without loss of generality, t‘, can then be written 
as 

c,(r,@ =ga(8)Inr+,f;,(r,H)+~2,(~>+0(1), as r+O, (3.10) 

where g1 and h, are bounded functions of 0, and .fx is singular at r = 0 yet less singular 
than In r. 

It is claimed here that gr must be a constant and that ,f, must be a function of I’ 
only. This is true since otherwise from (3.10) and (3.4) we would have 
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as Y approaches zero. Note that ~g~(~)/~~ # 0 and that ajII(r, ~)~~# is singular at Y = 0. 
Hence (3.1 I) would mean that ~~~/~~~ is more singular than l/r as r -+ 0, which 
contradicts (3.8). 

At the moment we have shown that if the limits as r-0 taken in the above 
deductions exist, if operations on the order symbols are permissible, and if the crack 
tip is only composed of, as indicated by the results of the present finite element 
analysis, elastic sectors and those plastic sectors within which 022 # 2rr, ,, then the 
velocity field can be expressed as 

z.,(P,H) =~:,Inv+f,(r)+h,(U)+O(l), as r+O, (3.12) 

where the coefficients C, and c? are constants. Further, if velocity continuity is 
enforced, both c2 and .JZ would be identically zero as required by the symmetry 
condition LJ~ = 0 at 8 = 0. 

The velocity field expressed in (3.12) with c2 = 0 and,!; excluded is the one essentially 
assumed in Gao’s asymptotic analysis. On the other hand, our finite element results 
reveal that the velocity component c’? possesses In r-singularity, which is apparent 
from Fig. I3 at least for P/C’, d 0.35. An inconsistency seems to exist. To this end, the 

following explanation is suggested. 
First note that in Fig. 13, there are indeed signs that the In r-singularity of the 

velocity component I,‘~ is dying out as m or P/C, increases, as evidenced by the tendency 
of the declining magnitude of slope of the straight lines in Fig. 13. Secondly, discoveries 
from mode III dynamic crack growth have demonstrated that the dominance zone of 
a first-order dynamic asymptotic solution is very small such that it vanishes rapidly 
as c/e, decreases. In other words, characteristics of the leading asymptotic behavior 
of the crack tip fields can be clearly detected for a certain finite element mesh only at 
a sufficiently large crack propagation speed. This would mean that the numerical 
results for C/L‘, $ 0.35 (and for r 3 0.2033 x lW”(K/rr,)‘) are essentially the solution 
for quasi-static crack growth or a mixture of both quasi-static and dynamic fields. 

Moreover, if (3.12) is taken to be valid and c? and .f2 are set to zero in order to 
satisfy the symmetry conditions at 0 = O”, then the crack opening displacement (which 
is twice the vertical displacement uZ at 0 = 180”), which can be obtained by integrating 
~1~ with respect to r along 8 = 180”, would be linearly dependent on r or the radial 
distance to the crack tip. This linear behavior indeed seems to exist for crack propa- 
gation speed higher than a certain value (e.g. the curve for nz = 0.4 in Fig. 16b). 

Recall that for crack propagation at low speeds, no plastic reloading has been 
detected along the crack flank (see Fig. 4). At the same time, it is noticed that the 
slope of the straight lines in Fig. 14(a) or the coeficient for the In r singularity of the 
velocity component z!~ is approximately zero for small LV values. To explain this 
behavior, it will be demonstrated in the following that the elastic (unloading) sector 
behind the crack front plastic sectors must be ended (near 8 = 180 ) with a trailing 
plastic sector, or otherwise, the coefficient for the In r-term, in V, must be zero. 

In fact, suppose the elastic unloading sector extends all the way down to the crack 
surface. Then, since it is in an elastic sector, (3.7a) becomes 

(3.13) 
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which can be integrated with respect to X, to yield 

- ;[(I +v)cT,, - \YT~~] = I‘, + P(.Yz), (3.14) 

where P(xJ is a function of .Y? resulting from the integration. 
Now from (3.12) r,(r,H) = c, Inr+0(1) as r + 0. Since it has been shown that 

the stresses must be bounded, then from (3.14), the quantity c, In r+P(_x2) must be 
bounded. Thus in order to cancel the nonboundedness of this quantity at r = 0 due 
to the In r singularity, the function P(.Y?) must be such that 

P(.u?) = -c, In 1.~~1 +P(.u?) = -c, in r-c, In lsin t)l +P(sZ), 

where F(.Y?) is bounded. Hence, the quantity -((‘, In lsin 01 +&s?) or c, In /sin 01 
must be bounded since by definition &Y,) is already bounded. This will necessarily 
require that c, = 0 since otherwise the whole term will not be bounded due to the fact 
that In lsin 01 + ix, as 8 + 180 ‘. This proves the previous claim. 

4. FRACTURE CRITERIA 

There are many issues regarding the use of K as a fracture characterizing parameter 
for dynamic crack propagation, not only due to experimental discrepancies, as dis- 
cussed in the introductory section, but also due to the fact that K, even under small- 
scale yielding conditions, no longer retains its many fine properties as in the case of 
fracture initiation. Because of the existence of the residual plastic wake behind the 
crack tip, K, in the case of crack growth, loses its simple relationship with the energy 
release rate G, which is somehow the physical ground for postulating the K-criterion 
for fracture initiation. Also because of the existence of the plastic wake, the singular 
K-field does not completely surround the crack tip elastic-plastic zone, and it is not 
clear whether K still characterizes the fracture behavior at the crack tip. To summarize, 
directly assuming the validity of the K-criterion for dynamic crack propagation in 
elastic-plastic materials has no solid theoretical grounds. However, as we know, 
there has been vast time-investment in developing and standardizing K-measurement 
techniques and instruments, and well-documented data are widely available. It is 
therefore of vital importance to carefully investigate the validity of the K-criterion 
from a more fundamental point of view, and to properly assess its accuracy and 

reliability as a practical fracture criterion. 
It is our purpose in this section to demonstrate, instead of directly assuming. the 

legitimacy of the K-criterion for dynamic crack propagation in solids which fail in a 
locally ductile manner through the use of more fundamental fracture criteria such as 
those directly based on the near-tip deformation field. In particular, we will utilize the 
McClintockLIrwin critical plastic strain criterion (MC‘CLINTWK and IRWIN, 1964) to 
extract theoretical Kfc vs 1% curves from our numerical full field solutions for mode I 
plane stress crack tip fields in elastic-perfectly plastic solids, where K;i is the critical 
dynamic stress intensity factor in plane stress, and 1’ is the speed of crack propagation. 
Good agreement with experimental results on 4340 steel will be dcmonstratcd. WC 
will also point out the source of difficulty, or impossibility to be more accurate in 
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some circumstances, to extract such a K$ vs z’ relation from a crack tip opening 
displacement-based fracture criterion. Theoretical implications of this phenomenon 

will be addressed. 
As is well known, fracture criteria based on the energy release rate G (IRWIN, 1956), 

the stress intensity K, and the J-integral (RICE, 1968) have clear physical meanings 
and sound theoretical bases when used for the onset of crack growth in elastic-plastic 
solids under proper constraints, or when used for continued crack growth in ideally 
brittle solids. Under elastic-plastic stable crack growth conditions, however, these 
criteria themselves cannot tell the sources of increased material resistance to continued 
fracture. Hence, it is impossible to utilize them to generate theoretical material resist- 
ance curves (ASTM STP 527, 1974) without invoking more fundamental assumptions, 
such as those based on plastic strains at crack front, or those based on the crack 
opening displacement behind the crack tip. Besides, they cannot be extended without 
more fundamental studies to cases beyond their limits, such as cases involving dynamic 
crack propagation. 

Fracture criteria based on the crack opening displacement are frequently used in 
plane strain, where plastic straining is not most severe directly at the crack front (see, 
for example, a review by DENG, 1990). One such criterion is proposed by RICE and 
SORENSEN (1978), which assumes that fracture initiation and continued crack growth 
can occur if a critical crack tip opening 6, is maintained at a small characteristic 
distance r,, behind the tip. This criterion can be viewed as a critical crack opening 
angle criterion, and has been used successfully, under plane strain conditions, to 
explain the phenomenon of increased material resistance to continued fracture for 
stable crack growth (RICE et al., 1980). 

The Rice-Sorensen critical crack tip opening angle criterion has more recently been 
applied to extract theoretical Kfc vs 21 curves for mode I plane strain dynamic crack 
propagation by LAM and FREUND (1985). Under steady-state and small-scale yielding 
conditions, they employed the Eulerian type finite element formulation originally 
proposed by DEAN and HUTCHINSON (1980) for quasi-static crack extension. From 
crack opening results very near the crack tip, they were able to generate the crack- 
speed dependence of the critical dynamic stress intensity factor, which are qualitatively 
very similar to the experimental findings of ROSAKIS et al. (1984). 

The application of this criterion to our mode I plane stress case is however not 
successful. Data for the critical dynamic stress intensity, or the dynamic fracture 
toughness Kfc, obtained from laboratory tests performed on thin metal plates, which 
fracture in a locally ductile manner, exhibit a monotonic rising tendency as the crack 
speed 2: increases (see, e.g., ROSAKIS et al., 1984 ; ZEHNDER and ROSAKIS, 1990). In 
order to predict such a tendency with the Rice-Sorensen criterion, it is necessary for 
the so-defined crack tip opening angle 6(v)/r, when plotted against the normalized 
toughness value KfJK,, with K,, being the quasi-static steady-state value, to have 
lower values for higher crack speeds when the normalized toughness is fixed. Another 
requirement is that when the same plot is used, the quantity K$/K\, should have lower 
values for lower crack speeds when the opening angle is fixed. We notice that such a 
tendency is indeed observed for mode I plane strain (see Fig. 6 of the paper by LAM 
and FREUND, 1985). Yet this is not the case in mode I plane stress for elastic--perfectly 
plastic materials, although our finite element mesh is much finer than that employed 
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by Lam and Freund. In fact, we did not observe such a tendency even on ;I scale 
about one-hundredth finer than that of the previous two authors. The same situation 
is also reported by Douc;r.~s r’/ ol. (1% 1) for mode III. 

The difficulty in applying critical crack tip opening angle criterion to modo I I I and 
mode I plane stress can in one way be attributed to numerical errors accumulated 
near the crack tip. One such error is simply due to the lack of enough spatial resolution 
near the crack tip. This leads to the usual finite element discretization error which 
alone would blur the real behavior of the crack tip opening profile. To this end, it is 
emphasized here that the mesh we employed has a ratio of plastic zone sire to the 
smallest element size on the order of I .6 x IO’, which is already a very high resolution. 
Another source ofnumeric~l error is somewhat peculiar to the Eulerian f~~rrnul~~ti~~I1 in 
which updated stresses are obtained through numerical integrations of the incremental 
constitutive law from crack front to crack back. This integration, after sweeping the 
crack tip. carries large discretization errors to the arcas behind the crack tip, which 
is most significant immediately near the tip. The crack tip opening profile. which is 
to be used in a fracture criterion. happens to be most inaccurate there. 

Another factor contributing to this difficulty may come from the asymptotic nature 
of the crack tip fields in mode I plant stress and in mode 111. Taking the mode III cast’ 
as an example, the asymptotic solution for dynamic crack propagation by SI.I:PY~% 
(1976) predicts a crack tip opening as 

where r. is the initial yield stress in shear. jt is the elastic shear modulus. The above 
relation, although it gives the desired property that c?(r)ir decreases RS the normalized 
crack speed HZ increases, was not conlirmed by the full field numerical solution 01 
DOUGLAS ct 01. (1981). To this end, we would like to recall the discovery of FIWUYI) 
and DOUGLAS (1982) that the region of dominance of the dynamic asymptotic solution 
vanishes as the crack speed goes to Lero. In light of this, it is very possible that the 
region in which the desired property of the crack opening displacement exists in order 
to apply the critical angle criterion is vanishingly small such that no numerical stud) 
of rcasonahle cost can detect such ;I presence. Besides. there is a physical lower limit 
to the size of the region along the crack faces where the calculated crack tip opening 
displacement values can be used ~~~~~ni~~~l’~~lly. As pointed out by RICK ct (11. (IWO). 
the characteristic distance I’~,, behind the crack tip in the Rice Sorensen criterion 
should be a size comparable to that of the fracture process yone ahead of the crack 
tip. Considering the similarities between mode III fracture and the fracture in mode 
I plane stress, and the fact that we have already used ;t very fine finite element mesh 
near the crack tip, it is believed that this ditliculty. or impossibility, to LIX the critical 
crack opening angle criterion to extract K;j vs 13 curves is due to the asymptotic nature 
of the mode I dynamic plane stress crack tip fields. In fact, when the crack speed is 
higher. i.e. when the dominance zone of the dynamic asymptotic crack tip field is 
larger. the above mentioned desirable crack opening property is indeed observed (see 
Fig. l6b), which somehow verifies our previous belief. 

The ~~~orernelltioned difficulty thus leaves us only one choice. that is, to use the 
plastic strain-based fracture criterion, or the ~~~lin~~~~k Irwin critical plastic strain 
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criterion to be more specific. The criterion assumes that fracture occurs when the 
crack-front plastic strain level at a characteristic distance away from the crack tip 
reaches a critical value (MCCLINTOCK and IRWIN, 1964). The characteristic distance 
is of the order of grain or subgrain size and should be determined experimentally. In 
light of this, we would like to recall some consistent observations regarding the change 
of magnitudes of plastic strains from various solutions in the literature, which are 
discussed extensively in a review by DENG (1990). 

It is observed by many that for stationary cracks, strains have I/r singularity at the 
crack tip for all three fracture modes. For advancing cracks, the singularity changes 
at crack front from In’(r) for quasi-static crack growth to In r for dynamic crack 
propagation in mode III. In mode I plane strain for the case of Poisson ratio Y = 0.5, 
plastic strains possess logarithmic singularities at least in the centered fan sector for 
quasi-static crack growth, yet the singularities of the strains become weaker for rapid 
crack extension. Thus it may be concluded that crack growth reduces the level of 
plastic strain concentration at the crack tip if the same remote load-level is maintained. 

Likewise in mode I plane stress. as depicted in Figs I1 (a) and 12(a), the magnitudes 
of plastic strains at the crack front decrease as the crack speed increases if the stress 
intensity factor is fixed at the same level. In other words, to maintain the same strain 
level at the same point ahead of the crack, greater stress intensity rectors must be 
maintained for higher crack speeds, which is the behavior observed in mode I fracture 
for many metals. Note that since strain rate sensitivity is not considered in the above 
dynamic analyses, inertia alone is expected to be responsible for such behaviors. 

Thus under small-state yielding conditions, nlonotonically rising K;1 vs 11 curves 
can be obtained from a full field, or simply a crack-line solution, if the critical plastic 
strain criterion is assumed. The first successful application of this criterion was 
performed by FREUND and DOUGLAS (1982) for mode III dynamic crack propagation 
in elastic--.perfectly plastic solids. ‘Their theoretical curves are qualitatively very similar 
to the findings of ROSAKIS ef al. (1984) from experiments conducted on thin, high 
strength steel plates and assuming generalized plane stress conditions. From both the 
theoretical and practical point of view. it would then be very interesting to observe 
such a good correlation between theory and experiments under approximately the 
same type of constraints, basically the plane stress or generalized plane stress con- 
ditions. 

The radial dependence of the effective plastic strain at the front of a mode I plane 
stress crack tip is illustrated in the usual normalized form in Fig. I8 in much detail 
for crack velocities ranging from O-40% of the elastic shear wave speed of the clastic- 
perfectly plastic material. We note that the effective plastic strain E,” is normalized by 
co, the initial yield strain in tension, and that the radial distance A’, along the pro- 
spective crack line is normalized by (K/o,,)‘, where K is the generic dynamic stress 
intensity factor and CJ() is the initial yield stress in tension. The procedure WC used to 
extract the Kfc vs r curves from numerical results is outlined as follows. First a critical 
plastic strain value is chosen and a horizontal line corresponding to this value is drawn 
on the plot. which intersects the various effective plastic strain distribution curves at 
diKerent normalized radial locations. If we denote the intersection location for the 
quasi-static curve by ~,~(K~~~~~~)~, where KS, is the critical stress intensity factor for 
steady-state quasi-static crack growth, and denote the intersection location for a 
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generic m value (m being the ratio of crack tip speed to the shear wave speed) by 
x,/(K$/ao)‘, where K$ is the critical dynamic stress intensity factor corresponding 
to Mach number nz, we would obtain for each ~7 the ratio of (k’f,)’ to (K,,)“. and 

hence the value #,/KS,, by dividing the second location by the first, since it is assumed 
that the critical plastic strain value is achieved at the same physical location X, for 
al1 f71. 

We would like to point out at this stage that the procedure we discussed above is 
different from the one employed by Freund and Douglas. Specifically. their procedure 
needs to use results for stationary cracks (which may not always be available), whereas 
ours does not. Another advantage of this procedure is that comparisons with dynamic 
experimental results are made easier and clearer. In fact. since all curves start at 
one at nr = 0 because of our ilormalizatit~~l, the experimental data can be similarly 
normalized without relying on the availability of the fracture toughness value for the 
onset of crack extension. 

The resultant theoretical toughness curves are shown in Fig. I9 for i:g ranging from 
I lC<] to l9&. It is found that as the value of the critical plastic strain increases, the 
toughness curve becomes steeper for higher HI values, while at the same time the curve 
remains fairly flat for lower rtl values, where 11~ is the ratio of the crack velocity to the 

shear wave speed. 
Comparisons with experimental data are made in Fig. 20. Note that the results by 

ROSAKIS cr al. (1984) and by ZEHNDER and ROSAKIS (1990) are obtained from 
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experiments conducted on thin 4340 steel specimen of different geometries and under 
different loading conditions. The 4340 structural steel is however heat treated to yield 
elrective stress-strain relations which can be approximately described as elastic 
perfectly plastic. The theoretical crack velocity dependence of the dynamic fracture 
toughness is obtained with the critical effective plastic strain equals to 15~:~~. It is seen 
from Fig. 20 that the one-parameter theoretical curve fits the whole experimental data 
amazingly well. This fact seetns strongly to suggest that under small-scale yielding 
conditions the K-criterion can still be used to characterize dynamic crack propagation 
in materials which fracture in a locally ductile manner. 

If the above calculation is performed between a quasi-static solution and a station- 
ary solution using the same critical plastic strain value, then the ratio between the 
fracture toughness for fracture initiation and the toughness for steady-state quasi- 
static crack growth can be obtained. For example, if we LISC our quasi-static solution 
and the solution by NARASIMHAN and ROSAKIS (1988) for the stationary cast. the 
fracture initiation toughness will be approximately 0.62 times the quasi-static steady- 
state crack growth value K,,, if $/E,, is taken to be 15. 
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